中国源完

第11卷第11期

激光处理高强度钢板 CCT 试件 裂纹尖端的研究

李再光 郑启光 李光霞 黄培彦 李家镕 李适民 李长春 (华中工学院)

提要:本文探讨用大功率 CO₂ 激光处理 25 OrMnSi 钢板 COT 试件的裂纹端部,对比激光处理的试件与未处理试件的结果表明,激光处理后能提高 ΔK_{in} ,提高疲劳寿命 2 倍以上,能降低 $\frac{da}{dN}$ 。通过对试件的微观组织分析和微观硬度测量,找出了激光热处理高强度钢板的初步激光热处理规范,并对试验结果进行了统计分析,得到了疲劳裂纹扩展循环数 N 与激光处理参数的近似关系式。

Laser treatment of end-cleavage of high strength steel CCT samples

Li Zaiguang, Zheng Qiguang, Li Guangxia, Huang Peiyan Li Jiarong, Li Shiming, Li Changchun,

(Huazhong Institute of Technology)

Abstract: The end-cleavage of 25CrMnSi steel CCT samples treated by a high-power CW CO_2 laser are investigated for improving the microstructure of the material, changing the stress distribution of the end-cleavage and enhancing the performances of the fatigue failure resistance of the material. It has been shown that ΔK_{th} of the materials is increased, the fatigue lifetime is prolonged by over two times and $\frac{da}{dN}$ is reduced after laser treatment. The approximate empiric formula is obtained relating the cycle number N of the fatigue crack spread to the laser treatment parameters by means of statistic analysis of the experimental data.

一、引 言

在低、中应力水平范围,经过激光处理 能使金属组织中的晶粒细化及材料内的局 部应力松弛,因而能提高材料疲劳裂纹扩展 阈值 ΔK_{th} 及降低裂纹扩展速率 $\frac{da}{dN}$ 。

本文着重从宏观力学参量 $\frac{da}{dN}$ 、 ΔK_m 和疲劳寿命 N 以及材料的金相组织、断口形

收稿日期: 1983年12月5日。

· 673 ·

貌等方面入手,探讨激光处理对材料疲劳裂 纹扩展规律的影响,并试图获得合理的激光 参数规范及必要的预处理措施。

二、实验条件与装置

本实验采用几何尺寸为 $1.2 \times 250 \times 90$ 毫米的中心穿透裂纹试件(简称 COT 试件, 见图 1),预制裂纹长度为 $2a_0 = 20$ 毫米,试 件材料为25CrMnSi。

试件在激光处理前先进行常规热处理, 将试件加热至 900°C±10°C, 保温 7 分钟,油 淬, 再在 270°C(或 450°C)回火, 保温 3 小时, 油冷, $\delta_s = 135$ 千克/毫米², $\delta_b = 155$ 千克/毫 米²。

图1 CCT 试件示意图

为克服金属表面反射激光辐射,分别采 取涂碳素墨水和磷化处理(用酸式磷酸锰磷 化)。磷酸锰盐对 10.6 微米的 CO₂ 激光辐射 具有很高的吸收率,通常可达 70~80% 以 上。

激光处理是在千瓦级 CO₂ 激光试验机上 进行的,使用功率为 2000 瓦,输出的光束为 多模结构,光斑约 25 毫米,用焦距 f=120 毫 米的透镜聚焦。

在材料表面状态相同时,激光处理试件 •674• 的表面温度和激光加热深度与激光功率P、 光斑直径等工艺参数有关,并与激光照射时 间的平方根成正比^[1,4]。鉴于被处理试件的 厚度仅1.5毫米,如扫描速度太慢,则因热影 响区加大导致试件变形大,故我们选取扫描 速度在40毫米/秒以上。为了增加总的激光 处理深度,采用对试件正反两面处理。在功 率密度较高,扫描速度较快时,采用两次重复 扫描方案,并继而采用正交设计方法,用多 种不同的激光工艺参数对 COT 试件进行处 理。

三、疲劳试验

将激光处理后的 25OrMnSi 钢板 OCT 试件在 PW₃-10 型程序控制万能疲劳试验机 上进行疲劳试验。裂纹长度 a 用 30 倍读数 显微镜从试件两侧读出,实验所加应力比为 0.15,为测定裂纹扩展速率 $\frac{da}{dN}$ 采用恒幅 值交变循环载荷作拉-拉疲劳试验。试验最 大载荷为 600 千克,最小载荷为 90 千克,频 率为 115 赫,测出 a,记录 N 值,相应的 a-N曲线和 $\frac{da}{dN}$ - ΔK 曲线示于图 2、图 3。本实 验取 $\frac{da}{dN}$ =10⁻⁷毫米/次对应的 ΔK 值为阈 值 ΔK_{th} 。考虑环境因素的影响, ΔK_{th} 的测 定采用分级降载法。

四、试验结果的分析与讨论

1. 裂纹扩展循环数 N 的统计分析

在裂纹从 $a_0=15$ 毫米扩展到a=30毫米的范围内选取数点 (a_i, N_i) ,求出未经激光处理试件的平均N值和激光处理的工艺参数为 $F=1.8\times10^4$ 瓦/厘米²、t=0.08秒、d=4.8毫米的一组试件的平均N值,作出它们的a-N曲线(见图2)。

考虑到条件误差和偶然误差的影响,采

(a) P-a-N, (b) 平均 a-N(未处理试件);
(c) P-a-N, (d) 平均 a-N(激光处理试件)

用成组对比法对实验数据进行统计分析。

假定对数裂纹扩展循环数

$$x_{ij} = \lg N_{ij}, \ i = 1, 2, \dots 10,$$

 $j=1, 2 \cdots 5,$

遵循正态分布,上式中*i*为*a*的计算点数, *j*为试件号。

子样平均值为:

$$x_i = \frac{1}{n} \sum_{z=1}^n x_{ij} \tag{1}$$

式中n为子样大小(即试件数量)。子样标准 差为

$$S_{i} = \frac{1}{n-1} \left(\sum_{j=1}^{n} x_{ij} - \frac{1}{n} \left(\sum_{j=1}^{n} x_{ij} \right)^{2} \right) \quad (2)$$

具有存活率 P 的对数裂纹扩展循环数为:

$$x_{iP} = x_i + n_P S_i \tag{3}$$

式中 n_P 为标准正态偏量,当取P=99%时,可查表得 $n_P=-2.326_o$

显著度检验:

(1) F 检验

设 S₁和 S_n分别为未辐射试件和激光处 理试件的疲劳裂纹扩展循环数 N 的方差,

 $S_{\rm I}^2 = (0.057)^2 = 0.0032$

$$S_{\rm II}^2 = (0.0210)^2 = 0.0004$$

于是, $F = S_1^2/S_{II}^2 \approx 8.0000$ 。 取显著度 $\alpha = 5\%$, 则

 $P(F > F_{\alpha}) = \int_{F_{\alpha}}^{\infty} f(F) dF = \frac{\alpha}{2} = 2.5\%$ 根据分子和分母的自由度

图 3

 $V_{I} = n_{I} - 1 = 4$ $V_{II} = n_{II} - 1 = 3$ 由 F 函数表可查得 $F_{a} = 9.12$, 故有

$$F < F_{\alpha}$$

因此两个子样标准差相同,这就满足了 成组对比的先决条件。

(2) *t* 检验统计量 *t* 为

$$t = \frac{(\bar{x}_{iP})_{\rm I} - (\bar{x}_{iP})_{\rm II}}{\sqrt{\frac{(n_{\rm I} - 1)S_{\rm I}^2 + (n_{\rm II} - 1)S_{\rm II}^2}{n_{\rm I} + n_{\rm II} - 2}} \sqrt{\frac{1}{n_{\rm I}} + \frac{1}{n_{\rm II}}}$$

式中 n_I、(*x_{iP}*)_I 以及 n_{II}、(*x_{iP}*)_{II} 分别为未处 理和已处理试件的个数及对数安全裂纹扩展 循环数。

将 $(\bar{x}_{iP})_{I}=2.8994$, $(\bar{x}_{iP})_{II}=3.3352$ 和 其它数据代入上式,可算得:

t = -14.5332

由自由度 $V = n_1 + n_{11} - 2 = 7$, 取显著度 $\alpha = 5\%$, 查表可得 $t_{\alpha} = 2.365_{\circ}$

因为 $|t| > t_a$,故未处理的安全裂纹扩展 循环数 $(N_I)_{P=99\%}$ 和已处理的试件的安全裂 纹扩展循环数 $(N_{II})_{P=99\%}$ 有显著差异。

2. 疲劳裂纹阈值 △Kth 的比较

如前所述, 4K th 由分级降载法测出, 并 列于表 1。

+	-
衣	Т

类别项目	8113	激光处理试件								
件号	35	31	44	73	67	68	70	87	74	66
ΔK_{th}	16.6	16.8	16.7	18.6	19.7	19.6	19.5	19.5	15.3	17.6
平均值		17	7.0			19	9.6	14	15.3	17.6

+	63
衣	4

件号	00	67	70	87	74	80	66	68	12
	1083	2474	2295	2363	862	1850	1205	2560	1942

注: 00号的 N 值是5个未处理试件的平均值,其余为激光处理试件号。

从表 1 可见, 若激光参数选择恰当, 亦可 提高 $4K_{th}$ 。 对采用 $F = 1.8 \times 10^4$ 瓦/厘米²、 t = 0.08 秒、d = 4.8 毫米这组参数进行处理, 其 $4K_{th}$ 比未经激光处理的 试 件 提 高 9.4~ 18.7%。

3. 激光处理试件的疲劳寿命估计式

由各激光处理试件的 *a-N* 曲线 可得到 *a*₀=15 毫米到 *a*=30 毫米的疲劳裂纹扩展循 环数 *N*,将其列于表 2。

对激光处理的试件和未处理的试件的疲 劳裂纹低速扩展速率 $\frac{da}{dN}$ 进行统计分析,可 知疲劳裂纹扩展的循环数 N 与激光工艺参 数 $F\sqrt{t}$ 有密切联系。疲劳裂纹扩展循环数 N 与工艺参数 $F\sqrt{t}$ 的关系曲线如图 4 所 示。由图中看出,激光处理试件的 N 与 $F\sqrt{t}$ 成线性关系,利用最小二乘法回归,得:

 $N = -4893.6 + 1.3765 F \sqrt{t}$ 上式说明在一定的激光热处理温度范围内, 试件的疲劳寿命 N 与激光照射时间的平方 根和激光功率密度之积成正比。因此根据上 式由激光工艺参数可近似估计出试件的疲劳 寿命。

4. 淬火内应力分析

工件在常规淬火时,通常会产生各种应 力(简称淬火内应力),其中包括热应力、组织 应力和附加应力等。影响应力状态、大小及 分布的因素很多,如加热温度、冷却速度、工

图 $F\sqrt{t}$ (瓦/厘米·秒)的关系 (图中功率密度是按第二次扫描计算)

件几何形状、钢的化学成份及淬火前的原始 组织等。淬火内应力危害很大,它是造成热 处理工件变形甚至开裂的主要原因,尤其是 残余拉应力,它是大大降低工件疲劳寿命的 重要因素之一。但是激光淬火时能产生残余 压应力¹¹¹,我们用 X 射线衍射仪对裂纹尖端 前沿区域的应力进行测试,也证明了残余压 应力的存在,这种残余压应力能改善原常规 淬火的内应力分布,并能使裂纹尖端的应力 松弛。

5. 显微组织分析

表 3 示出几种试件的显微组织及硬度 值。

图 5、6 示出激光处理与未处理试件的电 镜扫描照片。试件的基体组织主要为回火屈 氏体,有部分试件由于预处理时回火温度在

· 676 ·

表3 激光处理参数及硬度值

项 日	件					号				
~ 1	19	026	42	023	029	010	67	12	未处理试件	
激光功率(瓦)	1770	1770	1770	1770	1540	2000	-1480	1270		
扫描速度 (毫米/秒)	 1 59 2 65.2 		 60.5 75.4 	52.7	65.7	 52.7 60.5 	 (1) 48.0 (2) 60.5 	 48 60.5 		
激光淬火深度 (毫米)	0.27	>1	0.25	>1	>1	>0.5	0.14	0.12	0-,	
回火软带深度 (毫米)	无明显软带	无明显软带	0.27	无明显软带 (软带区很窄)	无明显 软带	0.27	0.24	0.31	B Int 1	
激光淬火区硬 度高值(H _v)	H _v 506	H _v 498	H _v 518	$H_{v}508$	$H_{v}505$	$H_{v}515$	$H_{v}510$	H_{v} 450	1000	
软带区硬度 低值(H _v)			$H_{v}276$	$H_v 322$	· 外 神行 - 新務	H _v 302	$H_{v} 308$	$H_{v} 305$	-002	
基体硬度值 (<i>H_v</i>)	$H_v 245 \sim$ $H_v 397$	H _v 286∼ H _v 386	<i>H</i> _v 387 (平均值)	<i>H</i> _v 385 (平均值)	H _v 386 (平均值)	<i>H</i> ,375 (平值值)	<i>H</i> _v 385 (平均值)	<i>H</i> _v 385 (平均值)	200 ~ 200 ~	
基体组织(预处 理回火温度)	主要为回火 索氏体、部 分回火屈氏 体(450°C回 火)	主要为回火 索氏体 (450°C回 火)	主要为回火 屈氏体 (270°C回 火)	主要为回火 屈氏体 (270°C回火)	主要为回 火屈氏体 (270°C 回火)	主要为回 火屈氏体 (270°C 回火)	主要 为 回 火屈氏体 (270°C 回火)	主要为回 火屈氏体 (270°C 回火)	主要为回火 屈氏体 (270°O回火)	
激光淬火组织	细板条马 氏体	细板条马 氏体	细板条马 氏体	细板条马 氏体	细板条马 氏体	细板条马 氏体	细板条马氏体	细板条马 氏体	到比其住在	

(b) 激光淬火区组织 5000× 图 5

450°C, 基体也出现回火索氏体组织。 经过 激光淬火后的淬火区组织为细板条 马氏体, 与基体组织相比, 晶粒要细密得多, 且组织分

图 6 激光处理过渡区组织 (右边为激光淬火区组织,左边为 软带区组织)800×

布均匀。在金属中晶粒越细小,其综合机械性能越好,不仅能提高硬度,还能提高材料的阈值 $4K_{th}$ 和降低裂纹的扩展速率 $\frac{da}{dN}$,因而能使材料具有较好的抗疲劳性能。

图 7、8 给出 67 号和 23 号试件的显微 硬度分布,从图中看到采用二次重复扫描,特 别是在先慢速后快速扫描,淬火区的下层和 基体之间出现回火软带区(见图 7),该区组

图 8 23 号试件(单次扫描)的显微硬度分布

织出现粗化(见图 6),且组织均匀性比淬火 区差,并存有较多的残留奥氏体,硬度值降低 到比基体还低。这是因为在重复扫描中,由 于第二次扫描速度比第一次快,这样第二次 激光扫描的热影响区温度使第一次扫描时已 被淬火的部分区域(靠淬火区下部)回火,因 而产生回火软带。而在单次扫描或先快后慢 的重复扫描中则不出现明显(或很窄)的回火 软带(见图 8)。

实验结果证明两次激光重复扫描的试件 比单次扫描试件的抗疲劳性能要好,我们认 为这可能是第二次激光重复扫描时可得到比 单次扫描更稳定些的淬火组织,并可使材料 内的应力进一步松弛之故。此外,在基体主 要为回火索氏体的试件中,如果激光功率密 度太高,扫描速度太快,会使淬火区马氏体转 变不完全,使残留奥氏体增多,并有颗粒状的 碳化物析出(见图9),这类试件的抗疲劳性 能有所降低。

图 10 为试件的断口形貌(照片的取向平 行 z 轴,与裂纹扩展方向垂直)。从图 10(b)

图 9 19 号试件的激光淬火区组织 5000×

(a) 未经激光处理的试件的断口形貌 (1600×)

(b) 67 号试件 B 区的断口形貌 (1600×) 图 10

中看到, 经激光处理的试件中心部分的断口 裂纹较细,并与裂纹扩展方向垂直,呈准解理 断裂。未经激光处理的试件的河流花样较多 (见图 10(a)),与激光处理的试件相比,更接 近解理断裂。由于激光处理后的试件裂纹扩 展的阻力较大,故疲劳寿命增加。

五、结 论

1. 激光处理 25OrMnSi 高强度钢板试 样的裂纹尖端,在合适的激光热处理温度 范围内,采用高功率密度,快速扫描(例如 $F=1.8 \times 10^4$ 瓦/厘%, t=0.08 秒), 可使材料组织的晶粒细化, 均匀性提高, 因而可提高材料的抗疲劳性能。

2. 实验结果表明,在一定的激光热处理 规范下疲劳裂纹扩展循环数 N 与激光辐射 的功率密度和照射时间的平方根之积成正 比,其近似估计式为:

 $N = -4893.6 + 1.3765 F \sqrt{t}$

 激光辐射可产生残余压应力,这对改 善裂纹尖端的应力分布,使裂纹尖端区的应 力松弛以及提高材料的疲劳寿命有利。

4. 在激光处理 250rMnSi 这类 低 合 金 钢中, 采用高激光功率密度, 两次重复快速扫 描(先慢后快)时, 在淬火区下层会形成回火 软带区, 该区出现组织粗化, 硬度值下降到比 基体还低。 而在低激光功率密度, 先快后慢 的两次重复扫描中或单次激光扫描则不出现 明显(或较窄)的回火软带。 5. 激光处理之前, 有必要对试件进行黑 化预处理, 以增加对 CO₂ 激光的吸收率。实 验中发现采用磷化处理的效果比涂碳素墨水 显著。

本试验在微观分析中得到了马咸尧、曹 治蓉、李志远、奚素碧等同志的热情帮助,在 力学试验研究过程中,还得到了李灏教授的 指导与支持,在此一并表示感谢。

参考文献

- [1] J. Mazumder; J. Metals, 1983, 35, No. 5, 18226.
- [2] 李昌华;《金属热处理》,1982, No. 6, 20~26.
- [3] 川澄博通; «机械と工具», 1979, 23, No. 2, 101~ 107; No. 3, 115~124.
- [4] V. Gregson; "Laser Heat Treatment", Paper No. 15, in Proc. Ins. Joint US/Japan Int. Laser Processing Conf., Laser Institute of America Toledo, Ohio, 1981.
- [5] C. Wick; Manufactoring Engineering, 1976, 78, No. 6, 35~37.

(上接第685页)

对应于样品距激光器输出窗为激光器半腔长 奇数倍的情况,这时两个纵模的反馈延迟相

差 m 的奇数倍,在这种情况下,当一个纵模反 馈增强时,另一个反馈减弱。样品振动时,检 测器的输出波形与两个模的相对强度有关。 当激光器有模漂移时,信号的波形是不稳定 的,若两个纵模强度相等,则检测器的光电信 号的波形严重失真,幅度也大大减小。 图 6 和图 7 表示出这种两个模的增强与减弱不同 步时,检测器输出的信号波形。显然,测量不 宜在这种条件下进行。

参考文献

- [1] P.G. R. King et al.; New Scientist, 1963, 17, 180.
- [2] D. E. T. F. Ashby, D. F. Jephcott; Appl. Phys., 1963, 3, 13.
- [3] D. M. Clunie, N. H. Rock; J. Sci. Instrum., 1964, 41, 489.
- [4] 中国计量科学研究院等;"反馈调制激光测振仪的研制及现场测试方法的研究",1981年11月。